MCDM
is_normalized_matrix
is_normalized_matrix (z_matrix:<built-infunctionarray>)
Return a Boolean value to indicate whether the matrix is normalized or not
is_normalized_vector
is_normalized_vector (w_vector:list)
Return a Boolean value to indicate whether the vector is normalized or not
check_scoring_input
check_scoring_input (z_matrix:<built-infunctionarray>, w_vector:list, is_benefit_z:list, s_method:str)
Raise an exception if any argument is inappropriate for the corresponding scoring method
check_weighting_input
check_weighting_input (z_matrix:<built-infunctionarray>, c_method:str, w_method:str)
Raise an exception if any argument is inappropriate for the corresponding weighting method
check_normalization_input
check_normalization_input (x_matrix:<built-infunctionarray>, is_benefit_x:list, n_method:str)
Raise an exception if any argument is inappropriate for the corresponding normalization method
abspearson
abspearson (z_matrix:<built-infunctionarray>)
Return the absolute value of the Pearson correlation coefficients of the provided matrix.
dcor
dcor (z_matrix:<built-infunctionarray>)
Return the distance correlation coefficients of the provided matrix.
squared_dcov_matrix
squared_dcov_matrix (z_matrix:<built-infunctionarray>)
Return the matrix of squared distance covariance between the columns of the provided matrix.
squared_dcor
squared_dcor (jl_dcov2, j_dvar2, l_dvar2)
Return the squared distance correlation between the corresponding columns.
squared_dcov
squared_dcov (j_func, l_func)
Return the squared distance covariance between the corresponding columns.
lin_func
lin_func (dmatrix)
Return the result of the linear function for the provided distance matrix.
dist_matrix
dist_matrix (z_vector:<built-infunctionarray>)
Return the Euclidean distance matrix of the provided vector.
pearson
pearson (z_matrix:<built-infunctionarray>)
Return the Pearson correlation coefficients of the provided matrix.
correlate
correlate (z_matrix:<built-infunctionarray>, c_method:str)
Return the selected correlation coefficients of the provided matrix.
em
em (z_matrix:<built-infunctionarray>)
Return the weight vector of the provided decision matrix using the Entropy Measure method.
mw
mw (z_matrix:<built-infunctionarray>)
Return the weight vector of the provided decision matrix using the Mean Weights method.
sd
sd (z_matrix)
Return the weight vector of the provided decision matrix using the Standard Deviation method.
vic
vic (z_matrix:<built-infunctionarray>, c_method:str='dCor')
Return the weight vector of the provided decision matrix using the Variability and Interdependencies of Criteria method.
linear1
linear1 (x_matrix:<built-infunctionarray>, is_benefit_x:list)
Return the normalized version of the provided matrix using the Linear Normalization (1) method.
linear2
linear2 (x_matrix:<built-infunctionarray>, is_benefit_x:list)
Return the normalized version of the provided matrix using the Linear Normalization (2) method.
linear3
linear3 (x_matrix:<built-infunctionarray>, is_benefit_x:list)
Return the normalized version of the provided matrix using the Linear Normalization (3) method.
vector
vector (x_matrix:<built-infunctionarray>, is_benefit_x:list)
Return the normalized version of the provided matrix using the Vector Normalization method.
normalize
normalize (x_matrix:<built-infunctionarray>, is_benefit_x:list, n_method:str)
Return the normalized version of the provided matrix using the selected normalization method.
critic
critic (z_matrix:<built-infunctionarray>, c_method:str='Pearson')
Return the weight vector of the provided decision matrix using the Criteria Importance Through Intercriteria Correlation method.
weigh
weigh (z_matrix:<built-infunctionarray>, w_method:str, c_method:str=None)
Return the weight vector of the provided decision matrix using the selected weighting method.
topsis
topsis (z_matrix:<built-infunctionarray>, w_vector:str, is_benefit_z:list)
Return the Technique for Order Preference by Similarity to Ideal Solution scores of the provided decision matrix with the provided weight vector.
cp
cp (z_matrix:<built-infunctionarray>, w_vector:list, is_benefit_z:list)
Return the Technique for Order Preference by Similarity to Ideal Solution scores of the provided decision matrix with the provided weight vector.
score
score (z_matrix:<built-infunctionarray>, is_benefit_z:list, w_vector:list, s_method:str)
Return the selected scores of the provided decision matrix with the provided weight vector.