src_dir = 'test'
fnames = ['spectra-features-smp.npy', 'spectra-wavenumbers-smp.npy',
'depth-order-smp.npy', 'target-smp.npy',
'tax-order-lu-smp.pkl', 'spectra-id-smp.npy']
X, X_names, depth_order, y, tax_lookup, X_id = load_kssl(src_dir, fnames=fnames)Training & validation (PLSR)
Various utilities function to train and evaluate the Partial Least Squares Regression baseline model
Train & evaluate
Learner
Learner (data, model)
Initialize self. See help(type(self)) for accurate signature.
PLS_model
PLS_model (X_names, pipeline_kwargs={})
Partial Least Squares model runner
Learners
Learners (tax_lookup, seeds=range(0, 20), split_ratio=0.1)
Initialize self. See help(type(self)) for accurate signature.
Example of use
dest_dir_model = Path('test/dumps-test/plsr/train_eval/all/models')
seeds = range(2)
learners = Learners(tax_lookup, seeds=seeds)
learners.train((X, y, depth_order[:, -1]),
n_cpts_range=range(40, 70, 2),
delta=2e-3,
dest_dir_model=dest_dir_model)--------------------------------------------------------------------------------
Seed: 0
--------------------------------------------------------------------------------
# of components chosen: 44
--------------------------------------------------------------------------------
Seed: 1
--------------------------------------------------------------------------------
# of components chosen: 48