y = np.array([1, 2, 3, 4])
y_hat = np.array([2, 3, 4, 5])
is_close(rpd(y, y_hat), 1.29, eps=0.001)True
rpd (y:numpy.ndarray, y_hat:numpy.ndarray)
Ratio of Performance to Deviation
| Type | Details | |
|---|---|---|
| y | ndarray | Target true value |
| y_hat | ndarray | Target predicted value |
True
rpiq (y:numpy.ndarray, y_hat:numpy.ndarray)
Ratio of Performance to Inter-Quartile
| Type | Details | |
|---|---|---|
| y | ndarray | Target true value |
| y_hat | ndarray | Target predicted value |
stb (y:numpy.ndarray, y_hat:numpy.ndarray)
Standardized Bias
| Type | Details | |
|---|---|---|
| y | ndarray | Target true value |
| y_hat | ndarray | Target predicted value |
y = np.array([1, 2, 3, 4])
y_hat = np.array([2, 3, 4, 5])
is_close(stb(y, y_hat), -0.666, eps=0.001)True
mape (y:numpy.ndarray, y_hat:numpy.ndarray)
Mean Absolute Percentage Error
| Type | Details | |
|---|---|---|
| y | ndarray | Target true value |
| y_hat | ndarray | Target predicted value |
y = np.array([1, 2, 3, 4])
y_hat = np.array([2, 3, 4, 5])
is_close(mape(y, y_hat), 52.083, eps=0.001)True
lccc (y:numpy.ndarray, y_hat:numpy.ndarray)
Lin’s concordance correlation coefficient
| Type | Details | |
|---|---|---|
| y | ndarray | Target true value |
| y_hat | ndarray | Target predicted value |
y = np.array([1, 2, 3, 4])
y_hat = np.array([2, 3, 4, 5])
is_close(lccc(y, y_hat), 0.714, eps=0.001)True
eval_reg (y:numpy.ndarray, y_hat:numpy.ndarray, is_log:bool=True)
Return metrics bundle (rpd, rpiq, r2, lccc, rmse, mse, mae, mape, bias, stb)
| Type | Default | Details | |
|---|---|---|---|
| y | ndarray | Target true value | |
| y_hat | ndarray | Target predicted value | |
| is_log | bool | True | True if evaluated values are log-10 transformed |